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1 Definitions

Let P (t, u) be the price of a zero coupon bond at time t maturing at time u. Define the spot rate
(yield to maturity) such that

P (t, u) = e−r(t,u)·(u,t)

r (t, u) = − log P (t, u)

u − t

Define the forward rate such that

P (t, u) = e−
� u

t
f(t,s)ds

f (t, u) =
∂ (− log P (t, u))

∂u

Define the short rate as the “rate for overnight borrowing”

r (t) = lim
u→t

r (t, u)

= f (t, t)

P (t, u) = E
Q
[

e−
� u

t
r(s)ds

]

where Q is the risk neutral measure.

The absence of arbitrage opportunities implies the existence of a stochastic discount factor (state
price density or pricing kernel ρ) so that the price of any contingent claim X at time 0 is

E [ρT · X] =

∫

states of the world
X (ω) · ρT (ω) dP (ω)

where P is the P -probability.

Now define the Q-probability dQ (ω) of a state as

dQ (ω) = e−
� T

0
r(s)ds

︸ ︷︷ ︸

>0

· ρT (ω)
︸ ︷︷ ︸

>0

· dP (ω)
︸ ︷︷ ︸

>0

(1.1)

The Q-probability has the following properties:

• dQ (ω) > 0 ∀ω
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1 Definitions

• Q (sure event) = 1

Example:

Consider the following strategy: put one unit of currency in the bank at time 0. At time T

you will have X = e
� T

0 r(s)ds. If the price of X at time 0 is 1 it follows

1 = E [ρT · X]

=

∫

states
X (ω) · ρ (ω) dP (ω)

=

∫

states
e

� T

0
r(s)ds · ρT (ω) dP (ω)

=

∫

states
dQ (ω)

The term dQ
dP

is called the Radon-Nikodyn derivative.

Definition: The price of any contingent claim X at time 0 is

E
Q
[

e−
� T

0 r(s)ds · X
]

We discount with the short rate.

Proof: The price of X is ∫

states
ρT (ω) · X (ω) dP (ω)

From formula 1.1 we know that

ρT (ω) =
dQ

dP
· e−

� T

0 r(s)ds

So we can calculate
∫

states
ρT (ω) · X (ω) dP (ω) =

∫

states

dQ

dP
· e−

� T

0
r(s)ds · X (ω) dP (ω)

=

∫

states
e−

� T

0
r(s)ds · X (ω) dQ

So we need a model of r (t) under Q; this is called a term structure model.
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2 Term structure models

2.1 Vasicek

Under Q the model suggest

dr (t) = κ · (θ − r (t)) dt + σdW (t)

where κ, θ, and σ are constants and W is a brownian motion under Q (W (t) − W (s) ∼
N [0, t − s] ∀t > s). The constant θ denotes the long run mean of the short rate and κ > 0 the
rate of mean reversion.

To find P (t, u) we need to know the distribution of
∫ u

t
r (s) ds given r (t). So the bond price

is a function of the short rate, but ..... distribution of the short rate at two different time points
and intervals are the same for the same starting point, i.e. if r (t) = r (t′) then the distribution

of
∫ u

t
r (s) ds is the same as the distribution of

∫ u′

t′
r (s) ds. So P (t, u) is a functin of r (t) and

u − t, but which function?

2.2 Cox-Ingersoll-Ross

This model was introduced 1985 and is also called the Square-Root model. The short rate is
defined by

dr (t) = κ · (θ − r (t)) dt + σ ·
√

r (t)dW (t) (2.1)

where κ, θ, σ and W have the same meaning as in the Vasicek model. This process is like in the
Vasicek model a Markov process.

2.3 Comparison of Vasicek and CIR

The two models of Vasicak and CIR differ in the following way:

In the Vasicek model

• Given r (t) and s > t, r (s) is normally distributed.

• Given r (t) the term
∫ u

t
r (s) ds is normally distributed.
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2 Term structure models

• Negative values of the short rate are possible.

• The short rate has constant volatility and normally distributed increments

r (s) = e−κ·(θ−r) · (θ − r (t)) + r (t) +

∫

. . . dW

︸ ︷︷ ︸

normally distributed

In the CIR model

• The short rate is always non-negative.

• The volatility vanishes while going to zero; only the drift is left.

Both models are affine one-factor models. “One factor” means that bond prices and in particular
∫ u

t
r (s) ds at time t depends only on a single variable, namely r (t). “Affine” means that the drift

coefficient and the variance (square of the dW coefficient) are affine, i.e. linear and constant,
functions of the state variable.

The general affine one-factor model is

dr = κ · (θ − r) dt +
√

a + b · rdW

Vasicek is one special case with b = 0 and CIR is another special case with a = 0.

In affine models yields r (t, u) are affine functions of the state variables. In an affine one-factor
model we have

P (t, u) = e−r(t,u)·(u−t)

= e−τ ·a(τ)−τ ·b(τ)·r(t)

where

r (t, u) = a (τ) + b (τ) · r (t)

τ = u − t

We call τ the remaining time or the time left to maturity.

2.4 Solution of Vasicek

The Vasicek solution for f is given by

P (t, u) = E
Q
[

e−
� u

t
r(s)ds

∣
∣
∣ r (t)

]

∫ u

t

r (s) ds ∼ N [function of τ and r (t) , function of τ ]

so the mean is an affine function of r (t) . We can write

P (t, u) = e−mean of
� u

t
r(s)ds+ 1

2
·variance of

� u

t
r(s)ds
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2 Term structure models

2.5 Dai and Singleton: Specification analysis of affine term
structure models

Generally the short rate of interest is defined by1

r (t) = δ0 + δ′ · Y (t)

dY (t) = κ · (θ − Y (t)) dt + Σ ·
√

S (t)dW (t)

where Y is a N -vector of factors and W is a vector of independent standard Brownian motions
under the risk neutral measure Q.

S = diagonal =






α1 + β′
1 · Y (t) 0

. . .
0 αN + β′

N · Y (t)






We can calculate the discount bond prices as

P (t, u) = E
Q
[

e−
� u

t
r(s)ds

∣
∣
∣Y (t)

]

P (t, u) = e−A(u−t)−B(u−t)·Y (t)

where A and B are functions of the time to maturity. Further we have

dYi (t) =

N∑

l=1

κil · (θl − Yl (t)) dt +

N∑

l=1

σil ·
√

αl + β′
l · Y (t)dWl (t)

(dYi (t))
2 =

N∑

l=1

σ2
il ·
(
αl + β′

l · Y (t)
)
dt

If Yj can be negative then βlj = 0 for all l.

2.5.1 Example: Two factor model

Suppose a two-factor model

dY1 = κ11 · (θ1 − Y1) dt + κ12 · (θ2 − Y2) dt +

+σ11 ·
√

α1 + β11 · Y1 + β12 · Y2dW1 + σ12 ·
√

α2 + β21 · Y1 + β22 · Y2dW2

Let α1, α2 ≥ 0.

• If σ11 6= 0 and α1 > 0, then Y1 can be negative.

1The symbol Σ is a parameter and does not indicate a sum.
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2 Term structure models

• If σ12 6= 0 and α2 > 0, then Y1 can be negative.

To ensure that Y1 is always non-negative it must be

dY1 = κ11 · (θ1 − Y1) dt + κ12 · (θ2 − Y2) dt +

+σ11 ·
√

α1 + β11 · Y1 + β12 · Y2dW1 + σ12 ·
√

α2 + β21 · Y1 + β22 · Y2dW2

and more

κ12 ≤ 0

κ11 · θ1 > 0

to get a positive drift and either

σ11 · β11 6= 0

or

σ12 · β21 6= 0

2.6 Balduzzi-Das-Foresi-Sundaram three factor model

This model is using three factors

(r, v, θ) = Y (2.2)

dr = n · (θ − r) dt +
√

vdW1 (2.3)

dv = γ · (µ − v) dt + σ ·
√

vdW2 (2.4)

dθ = λ · (η − θ) dt + φdW3 (2.5)

We see that r can become negative, v can not because it is as square root process and dθ is a
gaussian process. In this model θ specifies a random long-run mean.

2.7 Lin-Chen three factor model

This model is also based on the formulas 2.3 and 2.4, but uses the following formula instead of
2.5

dθ = λ · (η − θ) dt + φ ·
√

θdWS (2.6)

which is a square root process, i.e. now θ is also positive. If we now plug in formula 2.6 into
formula 2.3 we get √

a + b · θ + c · v →
√

v

9



2 Term structure models

2.8 Covariance

(dYi) (dYj) =

N∑

l=1

σil · σjl ·
(
αl + β′

l · Y ′ (t)
)
dt

(dY ) · (dY )′ = Σ ·
√

S · dW · (dW )′ ·
√

S · Σ′

= Σ · S (t) · Σ′

dY = . . . dt + Σ ·
√

S (t)dW

(dW ) · (dW )′ = INxNdt

Fundamental PDE

Now fix a maturity date u and write

f (t, Y (t)) = P (t, u)
︸ ︷︷ ︸

stochastic process

f : R
N+1 → R

= price of discount bond maturing at date u

Under Q we have
dP

P
= rdt + stochastic part

To compute the drift use the fact that

f (t, Y ) = e−A(u−t)−B(u−t)′·Y

Now set
Z = −A (u − t) − B (u − t)′ · Y

so the bond price is
P (t, u) = eZ

Now apply Ito’s Lemma

dP

P
= dZ +

1

2
· (dZ)2

dZ = Ȧ (u − t) dt + ∇B ′ · Y dt − B (u − t)′ dY

∇B =






Ḃ1
...

ḂN






(dZ)2 = B (u − t)′ · (dY ) · (dY )′ · B (u − t)

= B (u − t)′ · Σ · S (t) · Σ · B (u − t)

dP

P
= Ȧdt + ∇B′ · Y dt − B′

[

κ · (θ − Y ) dt + Σ ·
√

SdW
]

+
1

2
· B′ · Σ · S · Σ′dt
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2 Term structure models

As the drift of this process must be equal to the short rate we have

Ȧ + ∇B′ · Y − B′ · κ · (θ − Y ) +
1

2
· B′ · Σ · S · Σ′ · B = δ0 + δ′ · Y

︸ ︷︷ ︸

r

(2.7)

Further

S =






α1 + β′
1 · Y 0

. . .
0 αN + β′

N · Y






=






α1 0
. . .

0 αN




+






β′
1 · Y 0

. . .
0 β′

N · Y






Now we do

1. Match the coefficient of Y with δ

2. Match the constant on left with δ0

We have N + 1 ordinary differential equations. As boundary condition we have

P (u, u) = e−A(0)−B(0)′·Y

= 1 ∀Y

A (0) = 0

B (0) = 0

First solve 1(so called Riccati equation) for B with subject to B (0) = 0. As shows up the
solution of 1 does not depend on θ′. After that start with A (0) = 0 in formula 2.7 for solving 2:

A (t) =

∫ t

0
A (s) ds

Ȧ − B′ · κ · θ +
1

2
· B′ · Σ ·






α1

. . .
αN




 · Σ · B = δ0

where Ȧ is given be equating to δ0.

2.9 Example: CIR model

This model is based on the process given in formula 2.1 on page 6:
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2 Term structure models

dr (t) = κ · (θ − r (t)) dt + σ ·
√

r (t)dW (t)

As this is a one factor model we have Y = r. Now we want to know the price f (t, r) at time t

of a bond maturing at u. First we try the affine form

f (t, r) = e−A(u−t)−B(u−t)·r

and set
Z = −A (u − t) − B (u − t) · r

Then we calculate

df

f
= dZ +

1

2
(dZ)2

= Ȧdt + Ḃ · rdt − Bdr +
1

2
· B2 (dr)2

= Ȧdt + Ḃ · rdt −
(
B ·
[
κ · (θ − r) dt + σ ·

√
rdW

])
+

1

2
· B2 · σ2 · rdt

Since df
f

= rdt + stochastic part we can find functions for A and B:

Ȧ + Ḃ · r − B · κ · (θ − r) +
1

2
· B2 · σ2 · r = r

So the coefficient must match the Riccati equation

Ḃ + B · κ +
1

2
· B2 · σ2 = 1 (2.8)

with the initial condition B (0) = 0. Further

Ȧ − B · κ · θ = 0 (2.9)

⇓

A (τ) = κ · θ ·
∫ τ

0
B (s) ds

Now solve the Riccati equation 12 independent from θ, because θ only appears in formula 12.
Suppose that θ is a function of t then set τ = u − t and t = u − τ so that θ = θ (u − τ) and
finally

A (τ) = κ ·
∫ τ

0
B (s) · θ (u − s) ds

2.9.1 Fitting to current yield curve

The today’s price of a bond maturing at u is

P̂ (0, u)
︸ ︷︷ ︸

market price

= e−A(u)−B(u)·r(0)
︸ ︷︷ ︸

model price
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2 Term structure models

We calculate

log P̂ (0, u) = −A (u) − B (u) · r (0)

F̂ (0, u) = −d log P̂ (0, u)

du

= Ȧ (u) + Ḃ (u) · r (0)

= κ · B (u) · θ (u) + Ḃ (u) · r (0)

P̂ (0, u) = e−
� u

0
F̂ (t)dt

Ȧ (u) = κ · B (u) · θ (u)

θ (u) =
F̂ (0, u) − Ḃ (u) · r (0)

κ · B (u)

where F denotes the forward rate.

To fit the model to the current yield curve we have several possibilites:

1. Use time dependent parameters

2. Add a function of time

3. Model the forward rate (used by Heath-Jarrow-Morton)

2.9.2 Add independent factors

Suppose
r (t) = X1 (t) + X2 (t)

where X1 and X2 are independent stochastic processes under Q.

P (t, u) = E
Q
t

[

e−
� u

t
X1(s)+X2(s)ds

]

= E
Q
t



e−
� u

t
X1(s)ds · e−

� u

t
X2(s)ds

︸ ︷︷ ︸

independent random variables





= E
Q
t

[

e−
� u

t
X1(s)ds

]

· E
Q
t

[

e−
� u

t
X2(s)ds

]

Take an affine model with short rate r

P (t, u) = e−A(u−t)−B(u−t)′·Y (t)

and set

r̂ (0) = r (0) today′s short rate

r̂ (t) = r (t) + X (t)

13



2 Term structure models

for some deterministic function X starting at X (0) = 0. Discount bond prices are now

e−
� u

0 X(s)ds · e−A(u)−B(u)′·Y (0)

at time 0. Now match the yield curve

log P̂ (0, u)
︸ ︷︷ ︸

market price

= −
∫ u

0
X (s) ds − A (u) − B (u)′ · Y (0)

Take the derivative

F̂ (0, u)
︸ ︷︷ ︸

− d log P (0,u)
du

= X (u) + Ȧ (u) + Ḃ (u)′ · Y (0)

which tells us what X to choose to fit the yield curve:

X (u) = F̂ (0, u) − Ȧ (u) − Ḃ (u)′ · Y (0)

2.10 Example: Longstaff-Schwartz model

This model uses the following processes

r (t) = Y1 (t) + Y2 (t)

dYi = κi · (θi − Yi) dt + σi ·
√

YidWi ∀i = 1, 2

for W1 and W2 are independent standard Brownian motions.

New factors:

Z1 = r

= Y1 + Y2

Z2 = σ2
1 · Y1 + σ2

2 · Y2

Z =

(
1 1
σ2

1 σ2
2

)

︸ ︷︷ ︸

constant

·Y

= L · Y

14



2 Term structure models

So Z is a linear transformation of Y .

dZ = LdY

= L · κ · (θ − Y ) dt

dY = κ · (θ − Y ) dt + Σ ·
√

S (t) dW

κ =

(
κ1 0
0 κ2

)

θ =

(
θ1

θ2

)

Σ = I

S =

(
σ2

1 · Y1 0
0 σ2

2 · Y2

)

Now check that Z is an affine model:

dYi =
∑

l

κil · (θl − Yl) dt +
∑

l

σil ·
√

αl + β′
l · Y dWl

(dYi) · (dYj) =
∑

l

σil · σjl ·
(
αl + β′

l · Y
)
dt

=
∑

l

σil · σjl · αldt +

(
∑

l

σil · σjl · βl

)′

· Y dt

We see that the drift and the covariances are affine functions of Y - this identifies an affine
model. In the general model we have

(dY ) · (dY )′ = Σ · S · Σ′dt

Σ = identity matrix

(dY ) · (dY )′ = Sdt
︸︷︷︸

diagonal

Further

Z = L · Y
dZ = L · dY

= L · κ · (θ − Y ) dt + L · Σ ·
√

SdW

= κ∗ · (θ∗ − Z) + Σ∗ ·
√

SdW

If κ∗ · θ∗ = L · κ · θ and κ∗ · Z = L · κ · Y or κ∗ · L · Y = L · κ · Y we have

κ∗ = L · κ · L−1

Further we calculate

κ∗ · θ∗ = L · κ · θ
L · κ · L−1 · θ∗ = L · κ · θ

15



2 Term structure models

So we get

θ∗ = L · θ
Σ∗ = L · Σ
β∗

l =
(
L−1

)′ · βl

S =






α1 + β′
1 · Y 0

. . .
0 αN + β′

N · Y






=






α1 + β′
1 · L−1 · Z 0

. . .
0 αN + β′

N · L−1 · Z






=






α1 + β∗′
1 · Z 0

. . .
0 αN + β∗′

N · Z






Our new factors are

Z1 = Y1 + Y2

Z2 = σ2
1 · Y1 + σ2

2 · Y2

where Z1 = r is the short rate and Z2 is the variance of the short rate as we see here:

(dr)2 = (dY1)
2 + (dY2)

2 + 2 · (dY1) · (dY2)

=
(
σ2

1 · Y1 + σ2
2 · Y2

)
dt

= Z2dt

Usually we call Z2 v.
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3 Brownian rotation

Let K be an orthogonal matrix, where the rows of K have unit length and are mutually orthogo-
nal (i.e. orthogonal to itself: K ·K ′ = I). If W is a N -vector of independent standard Brownian
motions, so

dŴ (t) = K · dW (t)

To check if it is a Brownian motion calculate

Ŵ (t) =

∫ t

0
K (s) dW (s)

So Ŵ is a martingale and has unit variance
(

dŴ
)

·
(

dŴ
)′

= K · (dW ) · (dW )′ · K ′

= K · I · K ′dt

= Idt

We calculate

K =

(
K11 K12

K21 K22

)

K11 =

√

σ2
1 · Y1

σ2
1 · Y1 + σ2

2 · Y2

K12 =

√

σ2
2 · Y2

σ2
1 · Y1 + σ2

2 · Y2

K2
11 + K2

12 = 1

Now take a look at the stochastic part of dr:

stochastic part of dr = σ1 ·
√

Y1dW1 + σ2 ·
√

Y2dW2

=
√

σ2
1 · Y1 + σ2

2 · Y2 · (K11,K12) ·
(

dW1

dW2

)

=
√

vdŴ1

dv = σ2
1dY1 + σ2

2dY2

= σ2
1 · κ1 · (θ1 − Y1) dt + σ2

2 · κ2 · (θ2 − Y2) dt +

= +σ3
1 ·
√

Y1dW1 + σ3
2 · Y2dW2

17



3 Brownian rotation

In dŴ = KdW choose second row to be orthogonal to first and have unit length. In dW =
K ′dŴ look at the stochastic part

dv =
(

σ3
1

√

Y1 + σ3
2 ·
√

Y2

)

· K ′dŴ

If we go from the risk neutral measure to the actual measure, the drift parameters κ and θ will
change.
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4 Forward rate models

Define F (t, s, u) as the continous compounded forward rate on loans from s to u that exists at
time t with t < s < u. To create an investment at s, short sell one unit s-maturity bond and buy
u-maturity bonds. So if we buy P (t,s)

P (t,u) units of u-maturity bonds at time t we receive P (t,s)
P (t,u) at

time u. So we must have

P (t, s)

P (t, u)
= 1 + rate of return

= eF (t,s,u)·(u−s)

In terms of continous compounding this defines F as continously compounded rate. We view F

as an annual rate.

log P (t, s) − log P (t, u)

u − s
= F (t, s, u)

lim
n→s

log P (t, s) − log P (t, u)

u − s
= −d log P (t, s)

ds

= F (t, s)

where F (t, s) is the forward rate at time t for an instantaneous loan at s > t.

4.1 Vasicek model

This model defines
dr = κ · (θ − r) dt + σdW

We start at time t and want to know the interest rate at a future time point u > t

r (u) = r (t) +
(

1 + e−κ·(u−t)
)

· (θ − r (t)) + σ ·
∫ u

t

e−κ(u−s)dW (s)

where r (u) is normally distributed with mean

r (t) +
(

1 − e−κ·(u−t)
)

· (θ − r (t))

and variance

σ2 ·
∫ u

t

e−2·κ·(u−2)ds

19



4 Forward rate models

If we look ath this model without drift, i.e. with no mean-reversion, we have for u > t

dr = σdW

r (u) = r (t) + σ

∫ u

t

dW (s)

P (t, u) = E
Q
[

e−
� u

t
r(s)ds

∣
∣
∣ r (t)

]

∫ u

t

r (s) ds =

∫ u

t

[

r (t) + σ ·
∫ s

t

dW (a)

]

ds

= (u − t) · r (t) + σ ·
∫ u

t

∫ s

t

dW (a) ds

Now we change the order of integration an get

∫ u

t

r (s) ds = (u − t) · r (t) + σ

∫ u

t

∫ u

a

dsdW (a)

= (u − t) · r (t) + σ

∫ u

t

(u − a) dW (a)

The process
∫ u

t
r (s) ds is normally distributed with mean

(u − t) · r (t)

and variance

σ2 ·
∫ u

t

(u − a)2 da = σ2 · (u − t)3

3

Finally we get

P (t, u) = e−(u−t)·r(t)+ σ2

6
(u−t)3

as the bond pricing formula for the non-mean reverting Vasicek model.

Now consider the forward price

log P (t, u) = − (u − t) r (t) +
σ2

6
· (u − t)3

F (t, u) = −d log P (t, u)

du

= r (t) − σ2

2
· (u − t)2

If we want to know how the forward rate changes over time we have to fix the maturity date u

and take differential with respect to t

dF (t, u) = dr + σ2 · (u − t) dt

= (u − t) · σ2dt + σdW
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4 Forward rate models

4.2 Ho-Lee Model

This model uses for ri a continously compounded annualized rate at time ti for loans from ti to
ti+1, where ∆t = ti − ti−1 is fixed. The discount bond price at ti maturing next day is

P (t, ti+1) = e−ri·∆t

For a fixed annual variance σ and two constant parameters θ1 and θ2 we have

r0 + θ1 + θ2 + 2 · σ ·
√

∆t

↗
r0 + θ1 + σ ·

√
∆t

↗ ↘
r0 r0 + θ1 + θ2

↘ ↗
r0 + θ1 − σ ·

√
∆t

↘
r0 + θ1 + θ2 − 2 · σ ·

√
∆t

Under Q the probabilities are 1
2 .

r1 = r0 + θ1 + Z1

r2 = r1 + θ2 + Z2

Z1 = ±σ ·
√

∆t

Z2 = ±σ ·
√

∆t

For two dates ti < tk we have

P (ti, tk) = E
Q
[

e− � k−1
l=i

rl·∆t
∣
∣
∣ ri

]

rl = ri +

l∑

h=i+1

(θh + Zh) ∀l ≥ i + 1

k−1∑

l=1

rl = ri +
k−1∑

l=i+1

rl

= ri +

k−1∑

l=i+1

(

ri +

l∑

h=i+1

(θh + Zh)

)

= (k − i) · ri +

k−1∑

l=i+1

l∑

h=i+1

(θh + Zh)

where only Z is random. Further

P (ti, tk) = e−(k−i)·ri·∆t− � k−1
l=i+1 � l

h=i+1 θn·∆t · EQ
[

e− � k−1
l=i+1 � l

h=i+1 Zn·∆t
]

︸ ︷︷ ︸

eα·(k−i−1)
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4 Forward rate models

For two periods we can set

E
Q
[
e−Z1·∆t

]
= eα(1)

=
1

2
· e−(σ·

√
∆t)·∆t +

1

2
· e(σ·

√
∆t)·∆t

and then we get for P (ti, tk)

P (ti, tk) = e−(k−i)·ri·∆t− � k−1
l=i+1 � l

h=i+1 θn·∆t + α · (k − i − 1)

As bond pricing formula for time 0 we have

P (0, tn) = e−n·r0·∆t− � n−1
l=1 � l

h=1 θh·∆t+α(n−1)

and further

P (0, tn+1) = e−(n+1)·r0·∆t− � n
l=1 � l

h=1 θh·∆t+α(n)

P (0, tn)

P (0, tn+1)
= er0·∆t+ � n

h=1 ·∆t+α(u−1)−α(u)

P (0, t2) = e−2·r0·∆t−θ1·∆t+α(1)

P (0, t3) = e−3·r0·∆t−2·θ1·∆t−θ2·∆t+α(2)

P (0, t4) = e−4·r0·∆t−3·θ1·∆t−2·θ2·∆t−θ3·∆t+α(3)

We have to choose θ1 to fit the market price of a two period bond and θ2 to fit the market price
of a three period bond.

rti = rti−1 + θi + Zi

∆ri = θi + Zi

dr (t) = θ (t) dt + σdW

where θ is a deterministic function. Remember that the forward rate F (0, tn, tn+1) is defined
by

eF (0,tn,tn+1)·∆t = 1 + rate of return

Definition: The forward rate is defined by

F (0, tn, tn+1) = eF (0,tn,tn+1)·∆t

=
P (0, tn)

P (0, tn+1)

F (0, tn, tn+1) = r0 +

n∑

h=1

θh +
α (n − 1) − α (n)

∆t

F (1, tn, tn+1) = r1 +

n∑

h=2

θn +
α (n − 2) − α (n − 1)

∆t

P (1, tn) = e−(n−1)·r1·∆t− � n−1
l=2 � l

h=2 θn·∆t+α(n−2)

P (1, tn+1) = e−n·r1·∆t− � n
l=2 � l

h=2 θn·∆t+α(n−1)

P (1, tn)

P (1, tn+1)
= e−r1·∆t+ � n

h=2 θn·∆t+α(n−2)−α(n−1)
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4 Forward rate models

The change of the forward rate is equal to

∆F = F (1, tu, tu+1) − F (0, tu, tu+1)

= r1 − r0 − θ1 +
α (n − 2) − 2 · α · (n − 1) + α (n)

∆t

= Z1 +
α (n − 2) − 2 · α (n − 1) + α (1)

∆t

where Z1 is independent of the maturity and the second term depends on the maturity. So
we can write

dF (t, u) = β (u − t) dt + σdW

Once again β is a function of the maturity and σdW is a random price. This reminds us
of Vasicek with κ = 0 with no mean reversion:

dF (t, u) = (u − t) · σ2

︸ ︷︷ ︸

equiv. to β

dt + σdW
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5 Heath-Jarrow-Morton models

Heath-Jarrow-Morton is a type of writing known models; it fixes date u and consider F (t, u)
under Q as t increases. Assume

dF (t, u) = µ (t, u) dt +

n∑

i=1

σi (t, u) dWi (t)

where µ (t, u) and σi (t, u) are at time t know stochastic processes which may depend on the
history of t. The initial condition is that F (0, u) is given as the market forward rate at time 0
for every u. Also given is

P (0, u) = e−
� u

0 F (0,s)ds

which matches the current yield curve.

The result of HJM is that the σi’s determine the µ’s. Take N = 1:

dF (t, u) = µ (t, u) dt + σ (t, u) dW (t)

dP (t, u)

P (t, u)
= r (t) dt + stochastic part

P (t, u) = e−
� u

t
F (t,s)ds

Now set

Y (t) =

∫ u

t

F (t, s) ds

and with usual calculus we get

d

dt

∫ u

t

F (t, s) ds = −F (t, t) +

∫ u

t

∂F (t, s)

∂t
ds

dY = −F (t, t) dt +

∫ u

t

(dF (t, s)) ds

F (t, t) = r (t)

dY (t) = −r (t) dt +

{∫ u

t

(µ (t, s) ds)

}

dt +

{∫ u

t

(σ (t, s)) ds

}

dW (t)

(dY )2 =

{∫ u

t

σ (t, s) ds

}2

dt

Now write

f (u) =

∫ u

t

σ (t, s) ds
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5 Heath-Jarrow-Morton models

and calculate

(dY )2 = f (u)2 dt

= f (t)2 + 2 ·
∫ u

t

f (s) · f ′ (s) ds

= 2 ·
∫ u

t

σ (t, s) ·
∫ s

t

σ (t, a) dads

dP

P
= −dY +

1

2
· (dY )2

= rdt −
{∫ u

t

µ (t, s) ds

}

dt + stochastic part
︸ ︷︷ ︸

{ � u

t
σ(t,a)da}dW (t)

+

{∫ u

t

σ (t, s) ·
∫ s

t

σ (t, a) dads

}

dt

= rdt + stochastic part

This now leads us to the HJM result:
∫ u

t

µ (t, s) ds =

∫ u

t

σ (t, s) ·
∫ s

t

σ (t, a) dads ∀u

µ (t, s) = σ (t, s) ·
∫ s

t

σ (t, a) da

where σ (t, s) is the volatility coefficient of dF (t, s) and
∫ s

t
σ (t, a) da is the volatility coeffi-

cient of the discount bond dP (t,s)
P (t,s) .

As final result we get

dF (t, u) = σ (t, u) ·
{∫ u

t

σ (t, a) da

}

dt + σ (t, u) dW (t)

dP (t, u)

P (t, u)
= rd −

{∫ u

t

σ (t, a) da

}

dW (t)

A special case would be σ (t, u) = σ with gives us

dF (t, u) = (u − t) · σ2dt + σdW (t)

which is a Vasicek model with κ = 0.

5.1 Derivatives

Consider a call option maturing at T on a discount bond maturing at u > T with exercise price
K . The price of that option at time 0 is

E
Q
[

e−
� T

0 r(s)ds · (P (T, u) − K)+
]

=

= E
Q
[

e−
� T

0
r(s)ds · P (T, u) · IP (T,u)>K

]

︸ ︷︷ ︸

♦

−K · E
Q
[

e−
� T

0
r(s)ds

]

︸ ︷︷ ︸

♣

(5.1)
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5 Heath-Jarrow-Morton models

where ♦ use a bond maturing at u as numeraire and ♣ uses a bond maturing at T as numeraire.

To solve ♦ using ρ as the state prices calculate

dQ

dP
= e−

� T

0 r(s)ds · ρ (T )

dQ∗

dP
=

P (T, u)

P (0, u)
· ρ (T )

dQ∗

dQ
=

dQ∗

dP
· dP

dQ

=
P (T, u)

P (0, u)
· e−

� T

0 r(s)ds

E
Q
[

e−
� T

0 r(s)ds · P (T, u) · IP (T,u)>K

]

= P (0, u) · EQ

[
dQ∗

dQ
· IP (T,u)>K

]

= P (0, u) · Q∗ (P (T, u) > K)

If we use the same procedure to solve ♣ we get

K · E
Q
[

e−
� T

0 r(s)ds
]

= K · P (0, T ) · Q∗∗ (P (T, u) > K)

where Q∗∗ uses the T -maturity bond as numeraire.

To actually calculate a value for the Q∗ respective Q∗∗ probability we need

Girsonov’s Theorem: If W is as Q-Brownian motion, then dW ∗ = dW − dξ
ξ

dW defines a

Q∗-Brownian motion, where we first start under Q and dξ
ξ

is equal to the stochastic part
of the new numeraire’s return.

In this case assume a Vasicek model with κ = 0 which is equivalent to a constant volatility HJM.

dP (t, u)

P (t, u)
= rdt −

(∫ u

t

σ (t, s) ds

)

dW (t)

= rdt − (u − t) · σdW (T )

Now set dW ∗ = dW + (u − t) · σdW · dW = dW + (u − t) · σdt and plug in

dP (t, u) = rdt − (u − t) · σ · {dW ∗ − (u − t) · σdt}
= r +

(

(u − t)2 · σ2
)

dt − (u − t) · σdW ∗

P (T, u) = P (0, u) · e
� T

0 (r(t)+(u−t)2·σ2)dt−
� T

0
(u−t)·σdW ∗(t)− 1

2
·

� T

0
(u−t)2·σ2dt

The options is in the money iff

log P (0, u)+

∫ T

0
r (t) dt+

∫ T

0
(u − t)2·σ2dt−

∫ T

0
(u − t)·σdW ∗ (t)−1

2
·
∫ T

0
(u − t)2·σ2dt > log K
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5 Heath-Jarrow-Morton models

The model for r is
r (t) = r (0) + θ (t) + σ · W (t)

for some θ, which is a deterministic function of time t. As final result we have

Q∗ (P (t, u) > K) = N [d1]

for some d1.

We are using the same method to solve ♣ of formula 5.1 while now using a T -maturity bond as
measure which gives us

dξ

ξ
= − (T − t) · σdW

Vasicek model with κ = 0: For a Vasicek model with κ = 0 we get a constant volatility
HJM-model. For a constant σ we have under Q

dP (t, u)

P (t, u)
= rdt +

∫ u

t

σdsdW (t)

= rdt + (u − t) · σdW (t)

27



6 Swaps

Assume a two year fixed for floating interest rate swap with six month payments and a notional
principle of one dollar. The fixed rate payer (i.e. the long position of the swap) has to pay every
six months R

2 times the notional principle to the floating rate payer, where R is the fixed rate.
The floating rate payer has to pay every six months L

2 times the notional principle to the fixed
rate payer, where L denotes the Libor rate at the beginning of the last six months.

A replicating portfolio would be:

• long one 6-month bond, short 1 + R
2 1-year bonds

• long one 1-year bond, short 1 + R
2 1.5-years bonds

• long one 1.5-year bond, short 1 + R
2 2-years bonds

At t = 0.5 we receive one dollar from the 6-month bond and invest that for six months at the
LIBOR. In one year we have 1 + L

2 from the LIBOR investment and we owe 1 + R
2 from the

short position in the 1 year bonds. This gives us a net value of

L

2
− R

2

At time 0 the portfolio must have a value of zero, i.e. the fair swap rate R must satisfy

P (0, 0.5) − R

2
· P (0, 1) − R

2
· P (0, 1.5) −

(

1 +
R

2

)

· P (0, 2) = 0

28



7 Swaptions

As an example, a swaption gives you the right in one year to enter into a two year swap as the
fixed rate payer with fixed rate R (i.e. sell the swaption; put swaption; floating rate payer buys
the swap). What is it worth?

The option will be exercised if

P (1, 1.5) − R

2
· P (1, 2) − R

2
· P (1, 2.5) −

(

1 +
R

2

)

· P (1, 3) > 0

The value of option at time 0 is

E
Q

[

e−
� 1
0 r(t)dt ·

{

P (1, 1.5) − R

2
· P (1, 2) − R

2
· P (1, 2.5) −

(

1 +
R

2

)

· P (1, 3)

}+
]

If there is a payment on the swap at six months, the fixed rate payer’s equivalent portfolio is
worth L(1)

2 − R
2 , where L (1) denotes the six-month LIBOR at time 1. The value of the swaption

at time 0 is

E
Q

[

e−
� 1
0 r(t)dt ·

{(
L (1) − R

2
+ 1

)

· P (1, 1.5) − R

2
· P (1, 2) − R

2
· P (1, 2.5) −

(

1 +
R

2

)

· P (1, 3)

}+
]

At time 0 the six-month LIBOR satisfies

1

1 + L
2

= P (0, 0.5) = e−
� 0.5
0 F (0,t)dt
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8 Cap

The owner of a two-year cap with cap rate R receives each six months
(

L
2 − R

2

)+
. A Cap is

equivalent to a portfolio of caplets.

Let L (t, T, T + δ) denote the forward rate at t for loans between T and T + δ, expressed as
annual rate, and not continously compounded. Let L (T, T, T + δ) denote the spot LIBOR at
time T for δ-lenght loans. Then we can write

1

1 + δ · L (T, T, T + δ)
= P (T, T + δ)

The value of a single caplet would be

E
Q
[

e−
� 1
0

r(t)dt · {δ · L (1, 1, 1 + δ) − δR}+
]

at time 1.

If we assume a Vasicek model with no mean reversion we get

1 + δ · L (T, T, T + δ) = e
� T+δ

T
F (T,s)ds

1 + δ · L (t, T, T + δ) = e
� T+δ

T
F (t,s)ds

Now set σ (t, s) = σ:

dF (t, s) = (s − t) · σ2dt − (s − t) · σdW (t)

dY =

∫ T+δ

T

dF (t, s) ds

=

(∫ T+δ

T

(s − t) · σ2ds

)

dt −
(∫ T+δ

T

(s − t) · σds

)

dW (t)

=
d (1 + δL)

1 + δL

δdL (t, T, T + δ)

1 + δL (t, T, T + δ)
= dY +

1

2
(dY )2

= 0dt
︸︷︷︸

martingale

+δ · σdW ∗
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8 Cap

Remember HJM constant volatility:

F (t, u) =

(

σ (t, u) ·
∫ u

t

σ (t, s) ds

)

dt + σ (t, u) dW (t)

= (u − t) · σ2dt + σdW (t)

dP (t, u)

P (t, u)
= rdt −

(∫ u

t

σ (t, s) ds

)

dW

= rdt − (u − t) · σdW (t)

If we use Y =
∫ T+δ

T
F (t, s) ds we get

dY =

(∫ T+δ

T

(s − t) · σ2ds

)

dt +

(∫ T+δ

T

σds

)

dW (t)

=

[

(T + δ − t)2

2
− (T − t)2

2

]

· σ2dt + δ · σdW (t)

(dY )2 = δ2 · σ2dt

Further

dξ

ξ
= −

(∫ T+δ

T

σ (t, s) ds

)

dW (t)

= − (T + δ − t) · σdW (T )

dW ∗ = dW + σ
(

Ṫ + δ − t
)

dt

With dW ∗ as Q∗-Brownian motion we get

Y =

[

(T + δ − t)2

2
− (T − t)2

2

]

· σ2dt +
1

2
· δ2 · σ2dt + δ · σdW ∗ (t)− δ · σ2 · (T + δ − t) dt

The price of a caplet is therefore given by

E
Q
[

e−
� T+δ

0
r(t)dt · {L (T, T, T + δ) · δ − δ · R}+

]

= P (0, T + δ) · EQ∗ [
(δ · L (T, T, T + δ) − δ · R)+

]

= P (0, T + δ) · EQ∗ [
(Z (T ) − 1 − δ · R)+

]

= P (0, T + δ) · BSC

where Z (T ) = 1 + δ · L (T, T, T + δ) and BSC denotes the Black-Scholes price for a call on
a stock with volatility δ · σ, exercise price 1 + δR, initial stock price 1 + δ · L (0, T, T + δ) and
interest rate zero (r = 0).

Further we can calculate

δdL (t, T, T + δ) = (1 + δ · L (t, T, T + δ)) · δ · σdW ∗ (t)

dL (t, T, T + δ)

L (t, T, T + δ)
=

1 + δ · L (t, T, T + δ)

δ · L (t, T, T + δ)
︸ ︷︷ ︸

BGM model assume constant

·δ · σdW ∗ (t)
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8 Cap

The price of a caplet is then

P (0, T + δ) · EQ∗ [
(L (T, T, T + δ) · δ − δ · R)+

]
= P (0, T + δ) · δ · BSC

where BSC here is the Black-Scholes price for a call on a stock with constant volatility, exercise
price R, initial stock price L (0, T, T + δ) and interest rate zero (r = 0).
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9 Duffie-Singleton

Define Λ (t) as following

Λ (t) =

{
0 if no default before t ; also if bond pays immediately
1 if default before t

Also define the following:

• Let P (t) be the price of the bond

• Let P̂ (t) be the price assuming no default, P̂ (T ) = X

• Let P̂ (t−) be the price just before t: P̂ (t−) = limu→t P̂ (u) ∀u < t

• Let L (t) be the loss in market value at default. So 1−L (t) is the recovery and (1 − L (t))·
P̂ (t−) is the cash payout in the event of default, i.e. how much to recover if default.

• Let h (t) dt be the probability of default in the instant dt at time t.

• Know that Λ (t) −
∫ t

0 h (s) ds is a Q-martingale. This implies E [dΛ] − h (t) dt = 0.

• We call h the compensator of the point process Λ.

• Let T be the maturity date.

• Let X be the payout at maturity if no default. So in case of a bond X = 1; otherwise X

might take any value.

9.1 Gains process

The gains process is defined by

G (t) = (1 − Λ (t)) · P̂ (t) +

∫ t

0
e

� t

s
r(u)du · (1 − L (t)) · P̂ (s) dΛ (s)

where s would be the default date.
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9 Duffie-Singleton

If Λ (t) = 0 we have G (t) = P̂ (t), otherwise we have G (t) = e
� t

s
r(u)du · (1 − L (t)) · P̂ (s) in

case dΛ (s) = 1. We can calculate

dG (t) = (1 + Λ) dP̂ − P̂ dΛ + (1 − L (t)) · P̂ (t) dΛ (t)

= r · P̂ dt + martingale part

If we assume no default before t then we have

G (t−) = P̂ (t−)

dG (t)

G (t−)
= rdt + dM

︸︷︷︸

stoch. part

dG (t) = r · P̂ (t−) dt + P̂ (t−) dM

where M is as Q-martingale and so
∫ t

0 GdM is also a Q-martingale.

Now take dP̂

P̂
= µdt+ martingale part, so that the expected return of P̂ is µ; but as we can’t buy

P̂ on the market, what is µ?

dG = (1 − Λ) ·
{

µ · P̂ dt + another martingale
}

− L (t) · P̂ dΛ

dG

dP̂
= (1 − Λ) · µdt + martingale − LdΛ

= (1 − Λ) · µdt − L · (dΛ − hdt)
︸ ︷︷ ︸

martingale

−h · Ldt + martingale

= {(1 − Λ) · µ − h · L}
︸ ︷︷ ︸

interest rate

dt + martingale

where dG

dP̂
is the return from holding the bond. It follows that

(1 − Λ) · µ − h · L = r

and if we assume no default

µ = r + h · L

so the fictive asset (bond) has a higher return than r - this will never default. We can further
calculate

e−
� t

0
[r(s)+h(s)·L(s)]ds · P̂ (t) = E

Q
[

e−
� T

0
(r(s)+h(s)·L(s))ds · P̂ (T )

∣
∣
∣Ft

]

P̂ (t) = E
Q
[

e−
� T

t
[r(s)+h(s)·L(s)]ds · X

∣
∣
∣Ft

]

because of P̂ (T ) = X .
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Example

Assume the following:

dr = κ · (θ − r) dt + σ ·
√

rdW1

y = h · L
dy = γ · (φ − y) dt + λ · √ydW2

where W1 and W2 are independent as well as both square-root processes. Before the default we
have

P (t) = E
Q
[

e−
� T

t
r(s)ds · e−

� T

t
y(s)ds · X

∣
∣
∣Ft

]

Take X as discount bond, i.e. X = 1.

P (t) = E
Q
[

e−
� T

t
r(s)ds

∣
∣
∣Ft

]

· E
Q
[

e−
� T

t
y(s)ds

∣
∣
∣Ft

]

= E
Q
[

e−
� T

t
r(s)ds

∣
∣
∣ r (t)

]

· E
Q
[

e−
� T

t
y(s)ds

∣
∣
∣ y (t)

]

= product of CIR − model square root bond prices
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10 Ahn-Dittmar-Gallant (no default risk)

We work under the actual probability measure P . The price of a T -maturity discount bond is
equal to

E [ρ (T )] = E
Q
[

e−
� T

0 r(t)dt
]

where ρ is a stochastic discount factor, i.e. a state price density process.

dQ

dP
= e

� T

0 r(t)dt · ρ (T )

= ξ (T )

ξ (t) = E [ξ (T )| Ft]

= Q − martingale

Now define ρ (t) = e−
� t

0
r(s)ds · ξ (t) and consider a security that pays X at time u < T , which

price must be

E
Q
[

e−
� u

0
r(t)dt · X

]

= E

[

ξ (T ) · e−
� u

0
r(t)dt · X

]

= E [ρ (u) · X]

E

[

ξ (T ) · e−
� u

0
r(t)dt

∣
∣
∣Fu

]

= e−
� u

t
r(t)dt · X · E [ξ (T )| Fu]

= e−
� u

0 r(t)dt · X · ξ (u)

= ρ () · X

Remember that at time u we know ρ and the payoff. Using the law of iterated expectations the
price of the security is

E

[

E

[

ξ (T ) · e−
� u

0 r(t)dt · X
∣
∣
∣Fu

]]

= E [ρ (u) · X]

Key result: For any reinvested asset price process S the term

ρ (t) · S (t)

is a P -martingale and the term

e−
� t

0
r(u)du · S (t)

is a Q-martingale.
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10 Ahn-Dittmar-Gallant (no default risk)

The fact that ρ (t) · S (t) is a P -martingale implies for all t < u

ρ (t) = E [ρ (u) · S (u)| Ft]

and so we get as pricing formula under P

S (t) = E

[
ρ (u)

ρ (t)
· S (u)

∣
∣
∣
∣
Ft

]

where the term ρ(u)
ρ(t) is known as the marginal rate of substituion. Under Q we can write the

pricing formula as

S (t) = E
Q
[

e−
� u

t
r(a)da · S (u)

∣
∣
∣Ft

]

Proof: To proof that ρ (t) · S (t) is a P -martingale we have to show that

E [ρ (t) · S (t) · IA] = E [ρ (u) · S (u) · IA] ∀A ∈ Ft

or equivalent

E

[

e−
� t

0 r(a)da · ξ (t) · S (t) · IA

]

= E

[

e−
� u

0 r(a)da · ξ (u) · S (u) · IA

]

E
Q
[

e−
� t

0
r(a)da · ξ (T ) · S (t) · IA

]

= E
Q
[

e−
� u

0
r(a)da · ξ (T ) · S (u) · IA

]

(10.1)

where formula10.1 follows from

e−
� t

0 r(a)da · S (t)

being a Q-martingale. Remember:

E

[

e−
� t

0
r(a)da · S (t) · IA · E [ξ (T )| Ft]

]

The price at time t of a u-maturity discount bond is

P (t, u) = E

[
ρ (u)

ρ (t)
· 1
∣
∣
∣
∣
Ft

]

which follows from

ρ (T ) · P (t, u) = E [ρ (u) · P (u, u)| Ft]

P (u, u) = 1

Now we look at the Y -factors

dY = κ · (θ − Y ) dt + ΣdW
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10 Ahn-Dittmar-Gallant (no default risk)

where κ, θ and Σ are constant and W is a N -vector of independent Brownian motions. The
factors are called gaussian factors because they are no square-root processes. Further

dρ

ρ
= −rdt +

N∑

i=1

γi · YidWi

under P (not Q!) and so
r (t) = δ0 + Y ′ · Λ · Y

where Λ is constant and positive semidefinite and δ0 is positive. So positive short rates are
guaranted, while we still have a quite flexible correlation structure.
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11 Portfolio consumption choice in
complete markets

We need to maximize

E

[∫ T

0
u (ct) dt

]

subject to

E

[∫ T

0
ρ (t) · c (t) dt

]

= w0

where w0 denotes the initial wealth. Lagranian give us

E

[∫ T

0
u (ct) dt − λ

[∫ T

0
ρ (t) c (t) dt − w0

]]

So the first order condition is

u′ (ct) − λ · ρ (t) = 0 ∀t

ρ (s)

ρ (t)
=

u′ (cs)

u′ (ct)

ρ (t) = e−
� t

0
r(u)du · ξ (t)

dρ

ρ
= −r (t) dt +

dξ

ξ

where ξ is a P -martingale. So we have

dρ

ρ
= −r (t) dt + stochastic part
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11 Portfolio consumption choice in complete markets

and we know that the bond prices are determined by the model of r (t) and the stochastic part of
dρ
ρ

. Further we calculate (using Ito)

ρ (t) · S (t) = P − martingale
d (ρ · S)

ρ · S =
dρ

ρ
+

dS

S
+

(
dρ

ρ

)

·
(

dS

S

)

= −rdt + stochastic part +
dS

S
+

(
dρ

ρ

)

·
(

dS

S

)

dS

S
= rdt −

(
dρ

ρ

)

·
(

dS

S

)

− stochastic part

E

[
dS

S

]

= rdt −
(

dρ

ρ

)

·
(

dS

S

)

where we call the term
(

dρ
ρ

)

·
(

dS
S

)
the risk premium.

Example

Maximize the portfolio choice

max E

[∫ T

0
e−δ·t · u (ct) dt

]

We start with
e−δ·t · u′ (c (t)) = λ · ρ (t)

and use Ito to get

−δdt +
du′ (c (t))

u′ (c (t))
=

dρ

ρ

Using Ito once again it follows

du′ (c (t)) = u′′ (c (t)) dc (t) +
1

2
· u′′′ (c (t)) (dc)2

so the stochastic part of dρ
ρ

is equal to stochastic part of u′′(c(t))
u′(c(t)) multiplied by the stochastic

part of dc. As final result for the risk premium we get

−
(

dρ

ρ

)

·
(

dS

S

)

= −u′′ (c (t)) · c (t)

u′ (c (t))
︸ ︷︷ ︸

coefficient of rel. risk aversion

·
(

dc

c

)

·
(

dS

S

)

so the risk premium is equal to the coefficient of relative risk aversion mulitplied by the
covariance with dc

c
.
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