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1 Definitions

Let P (¢, u) be the price of a zero coupon bond at time ¢ maturing at time u. Define the spot rate

(yield to maturity) such that

P(tu) = e Ttw @)
Define the forward rate such that

P(t,u) = o~ [t f(ts)ds

fltu) = 8(—10%5(@10))

Define the short rate as the “rate for overnight borrowing”

r(t) = limr(t,u)

u—t
= f(t¢)
P(tu) = EQ[efrew]

where () is the risk neutral measure.

The absence of arbitrage opportunities implies the existence of a stochastic discount factor (state

price density or pricing kernel p) so that the price of any contingent claim X at time 0 is

Blpr-X) = [ X (@) pr (@) dP (@)
states of the world

where P is the P-probability.
Now define the Q-probability dQ (w) of a state as

dQ (w) = ¢ Jo T 5 (W) - dP (w)

>0 >0 >0

The Q-probability has the following properties:

e dQ(w) >0 Yw

(1.1)



1 Definitions
e () (sureevent) =1

Example:

Consider the following strategy: put one unit of currency in the bank at time 0. Attime T’
T
you will have X = efo "(5)ds_|f the price of X at time 0 is 1 it follows

1 = Efpr- X]
= X (W) p(w)dP (w)

states

= / efOT T‘(S)ds . pT (w) dP (w)
states

- /t Q)

The term j—g is called the Radon-Nikodyn derivative.

Definition: The price of any contingent claim X at time 0 is
Q@ [e, Sy r(s)ds . X]

We discount with the short rate.
Proof: The price of X is
| @) X @drw)
states
From formula 1.1 we know that

d — TT‘S S
pT(w)Zd—g-e Jy ri)d

So we can calculate

) _ @ . 7f0T r(s)ds
/states pr (w) - X (w) dP (w) /states 7P e X (w)dP (w)

= [ e x @) dg
states

So we need a model of = (¢) under Q; this is called a term structure model.



2 Term structure models

2.1 Vasicek

Under () the model suggest
dr (t) =k (0 —r(t))dt + cdW (t)

where &, 6, and o are constants and W is a brownian motion under Q@ (W (t) — W (s) ~
N[0,t —s] Vt> s). The constant 6 denotes the long run mean of the short rate and x > 0 the
rate of mean reversion.

To find P (t,u) we need to know the distribution of [,“r (s)ds given r (). So the bond price
is a function of the short rate, but ..... distribution of the short rate at two different time points
and intervals are the same for the same starting point, i.e. if » (¢) = = (¢’) then the distribution

of [ (s)ds is the same as the distribution of f;f/ 7 (s)ds. So P (t,u) is a functin of r (¢) and
u — t, but which function?

2.2 Cox-Ingersoll-Ross

This model was introduced 1985 and is also called the Sgquare-Root model. The short rate is
defined by

dr(t)=k-(@—r(t))dt +o-/r(t)dW (1) (2.1)
where &, 6, o and W have the same meaning as in the Vasicek model. This process is like in the
Vasicek model a Markov process.

2.3 Comparison of Vasicek and CIR

The two models of Vasicak and CIR differ in the following way:

In the Vasicek model

e Givenr(t)and s > ¢, r(s) is normally distributed.

e Given r () the term [ r (s) ds is normally distributed.



2 Term structure models

o Negative values of the short rate are possible.

e The short rate has constant volatility and normally distributed increments
r(s)=e "0 (0 —r () +7r(t)+ /dW
N——

normally distributed

In the CIR model

e The short rate is always non-negative.

e The volatility vanishes while going to zero; only the drift is left.

Both models are affine one-factor models. “One factor” means that bond prices and in particular

[“ 7 (s) ds attime ¢ depends only on a single variable, namely r (¢). “Affine” means that the drift

coefficient and the variance (square of the dIW coefficient) are affine, i.e. linear and constant,
functions of the state variable.

The general affine one-factor model is
dr=r-(0—r)dt+vVa+b-rdW

Vasicek is one special case with b = 0 and CIR is another special case with a = 0.

In affine models yields r (¢, «) are affine functions of the state variables. In an affine one-factor
model we have

P(t,u) — e—r(t,u)~(u—t)
6—7'~a(7')—7'~b(7')~7‘(t)

where

r(t,u) = a(r)+b(1) r(t)

T = u-—t
We call 7 the remaining time or the time left to maturity.
2.4 Solution of Vasicek

The Vasicek solution for f is given by

P(tiu) = E“ [e, [ r(s)ds

r ()]

/ r(s)ds ~ N [function of 7 and r (¢), function of 7]
t

so the mean is an affine function of r (¢) . We can write

P (t,u) = e~ mean of [ r(s)ds+21 variance of [ r(s)ds
Ju) =



2 Term structure models

2.5 Dai and Singleton: Specification analysis of affine term
structure models

Generally the short rate of interest is defined by?
r(t) = 6o+ Y (t)

dAY (1) = k- (0—Y () dt+3-/SEH)dW (¢)

where Y is a N-vector of factors and W is a vector of independent standard Brownian motions
under the risk neutral measure Q.

a1+ B Y (1) 0
S = diagonal =
0 OZN‘Fﬂ;V‘Y(t)

We can calculate the discount bond prices as

P(t,u) = E@ [e—ft“(S)dS Y(t)]

P(tu) = e AW—D-Bu-—0¥Y(@)

where A and B are functions of the time to maturity. Further we have
N N
dy;(t) = Zﬁzl (O =Y (t))dt + Zail o+ B Y (1)dW (¢)
=1 I=1

N
@Y; (1) = Y on-(a+p-Y (b)) dt
=1

If Y; can be negative then 3;; = 0 for all /.

2.5.1 Example: Two factor model

Suppose a two-factor model

dYs, = Iill-((91—Y1)dt+l€12'(92—Y2)dt+
+o11 -V or + Bi1 - Y1+ i - YadWy + 019 -/ ag + Ba1 - Y1 + Pao - YadWs

Let a1, a0 > 0.

e If 011 # 0and a; > 0, then Y7 can be negative.

1The symbol X is a parameter and does not indicate a sum.



2 Term structure models
e If 0152 # 0and as > 0, then Y7 can be negative.

To ensure that Y7 is always non-negative it must be

dy;, = /'4311-((91—Y1)dt+/€12-(62—Y2)dt+
+o11 - Var + Bi1 - Y1+ Bra - YadWy 4 019 - ag + fa1 - Y1 + Bog - Yad Wy

and more

k12 < 0
l€11-01 > 0

to get a positive drift and either

011 '/611 7é 0

or

012 '621 7& 0

2.6 Balduzzi-Das-Foresi-Sundaram three factor model

This model is using three factors

(r,v,0) =Y (2.2)
dr = n-(0—r)dt+ VodW (2.3)
dv = ~-(u—v)dt+o-vdWs (2.4)
g = X-(n—0)dt+ ¢pdWs (2.5)

We see that » can become negative, v can not because it is as square root process and df is a
gaussian process. In this model 6 specifies a random long-run mean.

2.7 Lin-Chen three factor model

This model is also based on the formulas 2.3 and 2.4, but uses the following formula instead of
2.5

dd=X-(n—0)dt+ ¢ - VodWg (2.6)

which is a square root process, i.e. now @ is also positive. If we now plug in formula 2.6 into
formula 2.3 we get

Va+b-0+c-v— Vo
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2.8 Covariance

N
(dY:) (dY;) = D ou-o- (on+8-Y' (1) dt
=1

(dY)-(dY) = S-VS-dW-(dW) -VS %
S Y

dy Ldt+ %S (t)dw
(dW)-(dW)" = Ingndt

Fundamental PDE

Now fix a maturity date » and write

FEY®) = P(tu) fiRVNTL LR
stochastic process
price of discount bond maturing at date «

Under () we have

dP .
- = rdt + stochastic part

To compute the drift use the fact that

Now set

f (1Y) = e AC OBty

Z=-A(u—t)—Bu-1t)-Y

so the bond price is

P(t,u) =ée?

Now apply Ito’s Lemma

dP
P
dz

dZ+ - (dZ)*
t) dt+ VB -Ydt — B(u—t)dY

u—t) (dY) -B(u—1t)
B(u—t) -E-S()~E-B(u—t)

. 1
Adt+VB'-vdt— B [n-(G—Y)dH—E-\/gdW +5-B TSt

10



2 Term structure models

As the drift of this process must be equal to the short rate we have

A+VB - Y=B k-(0=Y)+2-B.5.5.%-B = 5+5-Y 7
2 N—

T

Further
o1 + ﬂi Y 0
S = :
0 an+ 8y Y
(e73] 0 ﬂi Y 0
_ . 4 .
0 anN 0 B Y
Now we do

1. Match the coefficient of Y with §

2. Match the constant on left with ¢

We have N + 1 ordinary differential equations. As boundary condition we have

Pl(uu) = 6—A(O)—B(O)’-Y
=1 VY
A(0) = 0
B{O) = 0

First solve 1(so called Riccati equation) for B with subject to B (0) = 0. As shows up the
solution of 1 does not depend on ¢’. After that start with A (0) = 0 in formula 2.7 for solving 2:

A(t) = /OA(s)ds

Qaq
, 1
A-Br-6+5-B % X-B = &

anN

where A is given be equating to d.

2.9 Example: CIR model

This model is based on the process given in formula 2.1 on page 6:

11



2 Term structure models

dr(t) =k-(0 —r(t))dt +o-/r()dW (1)
As this is a one factor model we have Y = r. Now we want to know the price f (¢,r) at time ¢
of a bond maturing at . First we try the affine form

f (t, 7’) _ e—A(u—t)—B(u—t)~7‘

and set
Z=—-Au—t)—Bu—t)-r

Then we calculate

% = dZ+ % (dz)

. . 1
= Adt+B-rdt—Bdr+§-BQ(dr)2

. ) 1
= Adt+B-rdt— (B-[s-(0—r)dt+0-/rdW]) +§-B2-02-rdt
Since % = rdt + stochastic part we can find functions for A and B:

. . 1
A—{—B-T—B-/{-(9—7“)—|—§-B2-02-r:r

So the coefficient must match the Riccati equation

. 1

B+B-/~;+§-B2-02:1 (2.8)
with the initial condition B (0) = 0. Further

A-B-k-0 = 0 (2.9)
U
A(r) = 5-0-/ B (s)ds
0

Now solve the Riccati equation 12 independent from 6, because 6 only appears in formula 12.

Suppose that 6 is a function of ¢ then set 7 = w —tand ¢t = v — 7 so that @ = 0 (u — 7) and
finally

A(T):H-/OTB(S)'G(’LL—S)CLS’

2.9.1 Fitting to current yield curve

The today’s price of a bond maturing at « is
P(0,u) = e~ A(w)—=B(u)-r(0)

~—
market price model price

12



2 Term structure models

We calculate

log P (0,u) = —A(u)—B(u)-r(0)
_dlogp(O,u)
du
= A(u)+ B(u)-r(0)
= k-B(u)-0(u)+ B(u)-r(0)
P0,u) = e~ Jo Pyt
Aw) = k-B(u)-6(u)
F(0,u) — B (u) -7 (0)
k- B (u)

where ' denotes the forward rate.

To fit the model to the current yield curve we have several possibilites:

1. Use time dependent parameters
2. Add a function of time

3. Model the forward rate (used by Heath-Jarrow-Morton)

2.9.2 Add independent factors

Suppose
r(t) = X1 (t)+ Xa(t)

where X7 and X5 are independent stochastic processes under ().

P(t7u) = EtQ _efftuXI(S)Jer(s)ds]

_ EtQ e [ Xi(s)ds - [ Xa(s)ds
independent random variables

_ g9 e_ Jx1000s] @ [ Kt

Take an affine model with short rate

P (t, u) _ efA(uft)fB(uft)'-Y(t)

and set

>
—~
@)
S—

= r(0) today’s short rate
r(t) = rt)+X(t)

13



2 Term structure models
for some deterministic function X starting at X (0) = 0. Discount bond prices are now

e Jo X (s)ds efA(u)fB(u)'-Y(O)

at time 0. Now match the yield curve

logPOu /X Yds — A(u) — B (u)" - Y (0)

market price

Take the derivative

F0,u) =X (u)+ A(u)+ B(u) Y (0)

__dlog P(0,u)
du
which tells us what X to choose to fit the yield curve:

X (u) = F(0,u) — A(u) — B(u) - Y (0)

2.10 Example: Longstaff-Schwartz model

This model uses the following processes

r(t) = Y1(t)+Ya(?)
dY; = ki (0; =Y dt+o; - /YidW;  Vi=1,2

for W1 and W5, are independent standard Brownian motions.

New factors:
Z1 = T
= 1+Y,
Zy = 02-Yi+o0i-Yy
Z = < 12 12 > Y
01 03
N————
constant
= LY

14



2 Term structure models

So Z is a linear transformation of Y.

dZ = LdY
= L-k-(0-Y)dt
dY = w-(0—Y)dt+%-/S{@)dW

P K1 0
- 0 )

9 =

S:

.
<

Now check that Z is an affine model:

dy;, = Zﬂil-(el—}ﬁ)dt—FZO’u-\/Oél-i-ﬁll-YdVVl
l l

(dY;) - (dY;) = Y ou-oj- (u+p5-Y)dt
I

/
= Zail'ajl'aldt+<Zail'o'jl'ﬁl> -Ydt
l l

We see that the drift and the covariances are affine functions of Y - this identifies an affine
model. In the general model we have

@dy)-(dy) = %.8-¥dt

Y = identity matrix
/ —
dY)-(dY) = Sdt
diagonal
Further
Z = L.Y
dZ = L-dY

= L-k-(0=Y)dt+L-%-VSdWw
= k(0" = 2Z)+ X% VSdW

fr* - 0*=L-k-0andr*-Z=L-k-Yors*-L-Y=L-k-Y wehave
k=L k- L}
Further we calculate

K0 = L-k-0
Lk-L7 0" = L-k-0

15



2 Term structure models

So we get
0* = L-0
> = L%
— /
g o= (L7 5
Oél—{—ﬁiy 0
S = .
0 ay + 0y Y
o+ B8, -L7 - Z 0
0 an+ 08y L7t Z
o+ 35 Z 0
0 ay + 6y - Z
Our new factors are
Z1 = Y1+Y
Zy = o01-Yi4+05-Y;

where Z; = r is the short rate and Z5 is the variance of the short rate as we see here:

(dr)?

Usually we call Z5 v.

(dY1)? + (dY2)? +2- (dY1) - (dY2)
(07 Y1+ 03 Ya) dt
Zodt

16



3 Brownian rotation

Let K be an orthogonal matrix, where the rows of K have unit length and are mutually orthogo-
nal (i.e. orthogonal to itself: K- K’ = I). If W is a N-vector of independent standard Brownian
motions, so

dW (t) = K - dW (t)

To check if it is a Brownian motion calculate

:/OtK(s)dW(s)

So W is a martingale and has unit variance

~ ~ !
(dW)-(dW) = K-(dW)-(dW) K’
= K-I-K'dt
= Idt
We calculate

K K12>
Ko Koo

Ko =

-
Kuo = \/ Y1 +02 .Yy
\/ Yl + 03-Y;
Kh+Kfp = 1
Now take a look at the stochastic part of dr:
stochastic part of dr = o - \/Y1dWi + 09 - \/YadWs
= \/a% Y1403 Y- (Ki1,Ki2) - <

= Vodi,

dv = o2dY] + o3dY;
= 07k (01— Y1)dt + 03 - ko - (0 — Yo)dt +
= 405 /YidW 4 03 - YadWy

A7
dWa

17



3 Brownian rotation

In dW = KdW choose second row to be orthogonal to first and have unit length. In dW =
K'dW look at the stochastic part

dv = (0':1))\/71"1‘0'% : \/?2) CK'dW

If we go from the risk neutral measure to the actual measure, the drift parameters « and 6 will
change.

18



4 Forward rate models

Define F'(t, s, u) as the continous compounded forward rate on loans from s to « that exists at
time ¢ with ¢ < s < u. To create an investment at s, short sell one unit s-maturity bond and buy
u-maturity bonds. So if we buy 113((22)) units of w-maturity bonds at time ¢ we receive 113((22)) at
time u. So we must have

= 1 + rate of return

— eF(t,s,u)~(u—s)

In terms of continous compounding this defines F' as continously compounded rate. We view F'
as an annual rate.

log P (t,s) — log P (t,u)

F(t,s,u)
u—s
. log P (t,s) —log P (t,u) dlog P (t,s)
lim = 7o \»7
n—s U— 8 ds
= F(ts9)

where F'(t, s) is the forward rate at time ¢ for an instantaneous loan at s > t.

4.1 Vasicek model

This model defines
dr=r-(0 —r)dt+ odW

We start at time ¢ and want to know the interest rate at a future time point u > ¢
u
r@=r+ (14 0) @)+ [t aw ()
t
where r (u) is normally distributed with mean

mw+<1—e%@%ﬁ-w—r@»

0_2 . / 6—2~n-(u—2)d8
t

and variance

19



4  Forward rate models

If we look ath this model without drift, i.e. with no mean-reversion, we have for v > ¢
dr = odW
r(u) = r(t) +0/ dw (s)
t

P(t,u) = E9 [e—fﬁ(S)dS r(t)]

/tur(s)ds _ /tu[r(t)—&—a-/tde(a)]ds

- (u—t)-r(t)+o~/tu/tde(a)ds

Now we change the order of integration an get

/tur(s)ds = (u—t)-r(t)—i—a/tu/audde(a)
= (u—t)-r(t)—i—a/u(u—a)dW(a)

t

The process [, 7 (s) ds is normally distributed with mean

(u—t)-7(t)

and variance

Finally we get

P (t,u) = e~ =0+ 5’
as the bond pricing formula for the non-mean reverting Vasicek model.
Now consider the forward price

0.2

log P (t,u) = —(u—t)r(t)%—g-(u—t)?’
Fltu) = _dlog:’;(t,u)
02
= r(t)—?-(u—t)Q

If we want to know how the forward rate changes over time we have to fix the maturity date u
and take differential with respect to ¢

dF (t,u) = dr+o% (u—t)dt
= (u—t)o’dt+ odW

20



4  Forward rate models

4.2 Ho-Lee Model

This model uses for r; a continously compounded annualized rate at time ¢; for loans from ¢; to
ti+1, Where At = t; — t;_1 is fixed. The discount bond price at ¢; maturing next day is

P (t, ti+1) — efri.At
For a fixed annual variance o and two constant parameters 6, and 6, we have

T0+01—|—92—|—2-U'\/At

ro+01+0- VAL
/
o ro + 01 + 09

N
7“0—|—91—O’-\/A15

SN SN

ro+01+60s—2-0- VAL
Under ( the probabilities are %
rn = ro+01+ 21

ro = r1+602+ 2
Zl = :EJ'\/At

ZQ = o VAt
For two dates t; < t; we have

P(t;,ty) = E@ [@*Zf;fn-m

g

l
r = Ti—l-Z(@h—l-Zh) Vi>i+1
h=i+1
k—1 k—1
Y=t 3on
=1 l=i+1
k—1 l
= rit Z <7“z‘+ Z (9h+Zh)>
l=i+1 h=i+1
k=1 1
= (k—i)ri+ > > (0u+2n)
I=i+1 h=i+1
where only Z is random. Further
P(tity) = o k=) =30 TY  S i O AL Q [67 S sty ZnAt

ea(k—i—1)

21



4  Forward rate models

For two periods we can set
EQ [e—Zl-At] — 604(1)

and then we get for P (¢;, tx)
P(tity) = e F0mBSinl B 0l o (] — - 1)
As bond pricing formula for time 0 we have
P(0,t,) = efn-ro-Ath;le S 0n-Atta(n—1)

and further

P(07tn+1) = 67(n+1)'TO'At72?:122:19h'At+a(n)
P(O tn) — ro AR Atta(u—1)—a(u)
(0 tn-i-l)
P(0,ty) = e 2rodt-tiatta(l)
P(0,t3) = e 3ToAt=200At=0sAtha(2)

P (O t4) _ 674-7‘0-At73-91-At72-92-At793-At+a(3)
, =

We have to choose 6, to fit the market price of a two period bond and 65 to fit the market price
of a three period bond.
Tty +0i+ Z;
Ar;, = 0;,+ Z;
dr(t) = 0(t)dt+ odW
where 6 is a deterministic function. Remember that the forward rate £ (0,t,,,t,+1) is defined

by
eF(Otn tni1) At _ 1 4 yate of return

Definition: The forward rate is defined by

F (07 tna thrl) = €F(O’tn’t”+1)'At
_ POt)
P(07tn+1)
n
a(n—1)—a(n)
F(Ovtnatn—i—l) = T0+Zeh+ A7
n
amnh—2)—a(n—1
F(l,tn,tn+1) — 7=1_|_Z€n_|_ ( )At ( )
P(l,tn) = e—(n—1)~r1~At—El”:_21 Sy On-Atta(n—2)
P (]., tn+1) — efn-rl-AtfzI"ZQ 22:2 On-At+a(n—1)
M — efrl-AtJrEZ:Q On-At+a(n—2)—a(n—1)

P (17tn+1)

22



4  Forward rate models

The change of the forward rate is equal to

AF = F(1,ty,tus1) — F(0,ty, tut1)
am—2)—2-a-(n—1)+a(n)
At
an—2)—2-a(n—1)+a(l)
At

where Z is independent of the maturity and the second term depends on the maturity. So
we can write

= rn—ro—bthi+

dF (t,u) = (u—t)dt + odW

Once again g is a function of the maturity and odW is a random price. This reminds us
of Vasicek with x = 0 with no mean reversion:

dF (t,u) = (u —t) - o dt + cdW
~———
equiv. to 3

23



5 Heath-Jarrow-Morton models

Heath-Jarrow-Morton is a type of writing known models; it fixes date « and consider F' (¢, )
under Q@ as t increases. Assume

dF (t,u) = p(t,u)dt + i oi (t,u) dW; (t)
i=1

where p (t,u) and o; (¢, u) are at time ¢ know stochastic processes which may depend on the
history of ¢. The initial condition is that 7 (0, ) is given as the market forward rate at time 0

for every u. Also given is
P (0, u) — e Jo! F(0,s)ds

which matches the current yield curve.
The result of HIM is that the o;’s determine the ;’s. Take N = 1:

dF (t,u) = p(t,u)dt+o(t,u)dW (t)

dP (t i
o ((15775)) = r(t)dt+ stochastic part
P(tou) = e Jrwois

Now set "
Y (1) :/ F (t,s)ds
t

and with usual calculus we get

% tuF(t,s)ds = _F(t,t)+/tu%d5
ay = _F(t,t)dH/tu(dF(t,s))ds
F(t,t) = r(t)
dy (t) = _r(t)dwr{/tu(u(t,s)ds)}dH{/tu(a(t,s))ds}dvv(t)
(dy)? = {/tua(t,s)ds}zdt
Now write
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5 Heath-Jarrow-Morton models

and calculate

(@Y)? = f(’dt

= f()?*+2- / f(s
s /t o / o (t, ) dads

— = —dY+ - (dY)?

= rdt— {/ w(t,s) ds} dt + stochastic part + {/ o (t,s) / o(t,a) dads} dt
t — t t

{[}} o(t,a)da}dW (t)
= rdt + stochastic part

This now leads us to the HIM result;

/tu”(t’s)ds = /tug(t73)'/tsa(t,a)dads Vau
pts) = ats): [ oo da

where o (¢, s) is the volatility coefficient of dF (t,s) and [’ o (¢,a) da is the volatility coeffi-

cient of the discount bond dlf((f 5))

As final result we get

dF (tu) = a(t,u)-{/tua(t,a)da}dt+a(t,u)dW(t)

dzf(%;)) _d { /t “ o (t,a) da} dw (t)

A special case would be o (¢, u) = o with gives us

dF (t,u) = (u —t) - o*dt + odW (t)

which is a Vasicek model with x = 0.

5.1 Derivatives

Consider a call option maturing at 7" on a discount bond maturing at « > T with exercise price
K. The price of that option at time 0 is

EQ [e*foTr(s)ds (P (T,u) —K)*} -
= E? [e’ Jo (s . p (T, ) 'IP(T,u)>K} — K -E° [e* I T(S)ds] (5.1)

¢ )
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5 Heath-Jarrow-Morton models

where <> use a bond maturing at « as numeraire and & uses a bond maturing at 7" as numeraire.

To solve <> using p as the state prices calculate

Qo J sy

dP

dQ* P(T,u)

P~ P(0,u) (@)
Q™ _ dQ* dP

dQ —  dP dQ

_ PTw)  ra(syas
P (0,u)
— [T r(s)ds dQ
EQ e fO ( )d . _P(T’7 U) 'IP(T,U)>K:| = P(O,U) EQ [d% ’ IP(T7U)>K:|

= P(0,u) - Q*(P(T,u) > K)
If we use the same procedure to solve & we get
K -E° [e— ffr(s)dﬂ — K-P(0,T)-Q* (P (T,u) > K)
where Q** uses the T-maturity bond as numeraire.

To actually calculate a value for the Q* respective Q** probability we need

Girsonov’s Theorem: If W is as Q-Brownian motion, then dW* = dW — %dW defines a

Q*-Brownian mation, where we first start under  and % is equal to the stochastic part
of the new numeraire’s return.

In this case assume a Vasicek model with = = 0 which is equivalent to a constant volatility HIM.
dP (t,u) v
N0 pdt — t,s)ds | dW (t
s = e ([Cottsas)aw o
= rdt—(u—1t) -cdW (T)
Now set dW* = dW + (u — t) - cdW - dW = dW + (u — t) - odt and plug in

dP (t,u) = rdt—(u—t)-o-{dW*— (u—t)-odt}
= 7“—|—<(u—t)2-02)dt—(u—t)-JdW*

P (T, U) = P (O,U) . efoT(T(t)"'(u_t)Q'02)dt_f0T(“_t)"7dW*(t)_%' OT(“_t)Q"’th

The options is in the money iff

T T T 1 T
logP(O,u)+/ r(t)dt+/ (u—t)%?dt—/ (u—t)-adW*(t)—i-/ (u—t)*o%dt > log K
0 0 0 0
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5 Heath-Jarrow-Morton models

The model for r is
r(t)=r0)+0(t)+o-W(t)

for some @, which is a deterministic function of time ¢. As final result we have
Q" (P (t,u) > K) = N [d1]

for some d;.

We are using the same method to solve & of formula 5.1 while now using a T-maturity bond as
measure which gives us
%:—(T—t)-adW

Vasicek model with x = 0: For a Vasicek model with k = 0 we get a constant volatility
HJM-model. For a constant o we have under )

dP (t,u)

dt dsdW (t
Pt0) r +/tas (t)

= rdt+ (u—t) odW (t)
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6 Swaps

Assume a two year fixed for floating interest rate swap with six month payments and a notional
principle of one dollar. The fixed rate payer (i.e. the long position of the swap) has to pay every
six months § times the notional principle to the floating rate payer, where R is the fixed rate.
The floating rate payer has to pay every six months % times the notional principle to the fixed
rate payer, where L denotes the Libor rate at the beginning of the last six months.

A replicating portfolio would be:

e long one 6-month bond, short 1 + § 1-year bonds
e long one 1-year bond, short 1 + % 1.5-years bonds

e long one 1.5-year bond, short 1 + % 2-years bonds

At t = 0.5 we receive one dollar from the 6-month bond and invest that for six months at the
LIBOR. In one year we have 1 + £ from the LIBOR investment and we owe 1 + £ from the
short position in the 1 year bonds. This gives us a net value of

L R

2 2

At time 0 the portfolio must have a value of zero, i.e. the fair swap rate R must satisfy

P(0,0.5)—g-P(o,l)—g.P(o,l.m— <1+§> P (0,2) =0
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7 Swaptions

As an example, a swaption gives you the right in one year to enter into a two year swap as the
fixed rate payer with fixed rate R (i.e. sell the swaption; put swaption; floating rate payer buys
the swap). What is it worth?

The option will be exercised if
R R R
P(1,1.5) — 5-P(1,2) ) - P(1,2.5) — <1+5> -P(1,3) >0
The value of option at time 0 is

1 +
E? |e=Jo T(t)dt-{P(l,l.E)) - g-P(1,2) — g-P(1,2.5) - <1+ §> -P(1,3)} ]

If there is a payment on the swap at six months, the fixed rate payer’s equivalent portfolio is

worth @ — 4 \where L (1) denotes the six-month LIBOR at time 1. The value of the swaption

attime 0 is
EC [e—fo”(t)dt : {(L(U%R + 1> -P(1,1.5) — g -P(1,2) - g -P(1,2.5) — <1 + g) -P(1,3)}+]

At time 0 the six-month LIBOR satisfies

L P(0,05) = e I FOD
1+ %
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8 Cap

The owner of a two-year cap with cap rate R receives each six months (% — §)+. A Cap is
equivalent to a portfolio of caplets.

Let L (¢,7,T + 9) denote the forward rate at ¢ for loans between 7" and 7" + ¢, expressed as
annual rate, and not continously compounded. Let L (7, 7,T + ¢§) denote the spot LIBOR at
time T for §-lenght loans. Then we can write

1
1+0-L(T, T, T +9)

=P(T,T+9)
The value of a single caplet would be
EQ [e=Jor®dt . 15.1(1,1,1+6) — 6R}*

at time 1.

If we assume a Vasicek model with no mean reversion we get

1+5L(TaT7T+(S) = ef;+6F(T75)dS
6 LT, T46) — et Feas

Now set o (t,s) = o
dF (t,s) = (s—t)-o%dt — (s —t)-odW (1)

T+6
ay = / dF (t,s)ds
T

— </TT+5(s—t)'02ds> dt — (/TT+5(s—t)~ods> dW (t)

d(1+6L)
11 oL
5L (t,T,T + 5) .
_ Y + = (dY
1+ 0L (LT, T +9) 5 (@)
—  0dl +6-cdW*
~~

martingale
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8 Cap

Remember HIM constant volatility:

F(tu) = (J(t,u) /u (t, s)d>dt+o(t,u)dW(t)
= (u—t)- 2dt+adW(t
dP(t,u) _ rdt—< tsds) dw

= rdt — (u—1t)-cdW (t)

Ifweuse Y = [ F(t,s)ds we get

dy = (/;H (s —t)- an3> dt + </TT+6 UdS) dW (t)

(T+6-t)° (T-1)
dy)? = 62 o%dt

2 2
% _ (/TT+5a(t,s)ds> dw ()

= (T +5—1) - 0dW (T)
AW* = dW+o(T+5—t)dt

o?dt + 8- odW (t)

Further

With dW* as Q*-Brownian motion we get

Y:

1
-ant+§-52-02dt+(5-adW*(t)—(5-02-(T—i—(S—t)dt

(T+6-1)?° (T-1)?
2 2
The price of a caplet is therefore given by

EQ[ Dat LL(T, T, T+0)-6—8-R}y"| = PO, T+08)-EY [(6-L(T,T,T+68)~45-R)"]
= P(0,T+0)-E9 [(Z(T)-1-6-R)"]

= P(0,T+96)-BSC

where Z (T') =146 - L(T,T,T + ¢) and BSC denotes the Black-Scholes price for a call on
a stock with volatility § - o, exercise price 1 + R, initial stock price 1 + ¢ - L (0,7,7 + ¢) and
interest rate zero (r = 0).

Further we can calculate

ddL (t,T, T + 0) (14+6-L(t,T,T+90)) -6 -cdW*(t)
dL (t,T,T + 9) 146 -L(t, T,T+9)

LtT,T+06) 6 -L(tT,T+0) 0 - odW (1)

BGM model assume constant
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8 Cap

The price of a caplet is then
P(0,T+6)-E? [(L(T,T,T+6)-6§—6-R)*"|=P(0,T+)-5-BSC

where BSC here is the Black-Scholes price for a call on a stock with constant volatility, exercise
price R, initial stock price L (0,7',T7 + §) and interest rate zero (r = 0).
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9 Duffie-Singleton

Define A (t) as following

At) = 0 if no default before ¢ ; also if bond pays immediately
| 1 ifdefault before ¢

Also define the following:

9.1

Let P (¢) be the price of the bond
Let P (¢) be the price assuming no default, P (T) = X
Let P (t—) be the price just before t: P (t—) = lim,_; P (u) Vu <t

Let L (¢) be the loss in market value at default. So 1—L (¢) is the recovery and (1 — L (t))-
P (t—) is the cash payout in the event of default, i.e. how much to recover if default.

Let & (¢) dt be the probability of default in the instant dt at time ¢.

Know that A (¢) — fot h (s)ds is a @Q-martingale. This implies E [dA] — h (t) dt = 0.
We call h the compensator of the point process A.

Let T" be the maturity date.

Let X be the payout at maturity if no default. So in case of a bond X = 1; otherwise X
might take any value.

Gains process

The gains process is defined by

Gt)=1—-A@)-P@1)+ /Otefﬁr<U>du -(1=L(¢)-P(s)dA (s)

where s would be the default date.
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9 Duffie-Singleton

~

If A () = 0 we have G (t) = P (t), otherwise we have G (¢) = efs "@du . (1 — L (t))- P (s) in
case dA (s) = 1. We can calculate

dG(t) = (1+A)dP — PdA+ (1—L(t)-P(t)dA(t)
= 1. Pdt + martingale part

If we assume no default before ¢ then we have

~

G(t-) = P(t-)

= rdt+ dM

stoch. part

dG(t) = r-P(t=)dt+ P (t—)dM
where M is as (Q-martingale and so fot GdM is also a Q-martingale.

Now take % — udt + martingale part, so that the expected return of P is z1; but as we can’t buy
P on the market, what is z?

dG = (1—A)- {M - Pdt + another martingale} — L (t)- PdA

d .
d_JC; = (1 —A)- pdt + martingale — LdA
= (1—=A) pudt—L-(dA — hdt) —h - Ldt + martingale
N———
martingale

= {(1—=A)-pu—h-L}dt+ martingale

interest rate

where Z—g is the return from holding the bond. It follows that
(I1-=A)-p—h-L=r

and if we assume no default
p=r+h-L

so the fictive asset (bond) has a higher return than r - this will never default. We can further
calculate

o= Jolr(s)+h(s)-L(s)lds P(t) = E@ [67 Jo (r(s)+h(s)-L(s))ds P(T)‘ }-t}

el

(t) = E° [e— ST () +h(s) L(s)ds | X‘ ft}

because of P (T) = X.
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9 Duffie-Singleton

Example

Assume the following:

dr = Kk-(0—r)dt+o-rdW;
y = h-L
dy = - (6—y)dt+ X \JydWy

where 17 and W5, are independent as well as both square-root processes. Before the default we
have . .
P(t) =E® [67 Jo s o= [ y(s)ds 'X‘ ft}

Take X as discount bond, i.e. X = 1.
P(t) = E2 | S| g ] gQ [ v 7]

_ EQ [ef ftT r(s)ds r (t)} 'EQ [67 ftT y(s)ds y(t)]
= product of CIR — model square root bond prices
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10 Ahn-Dittmar-Gallant (no default risk)

We work under the actual probability measure P. The price of a T-maturity discount bond is
equal to
T
E[p (1)) = E |~ fo 7]

where p is a stochastic discount factor, i.e. a state price density process.

@ _ T rt)dt
1P elo p(T)

= &(T)
§@t) = E[(T)F]

= (@ — martingale

Now define p (t) = e~ Jor(s)ds . ¢ (t) and consider a security that pays X at time u < T', which
price must be

EQ [e‘ Jo' r)dt X] ) {5 (T)-e” Jo rat | x
= Elp(u)- X]
E {5 (T)-e” fo“T(t)dt‘ ]:u} = ¢ Wit x B¢ (T)| F]
= e Jor®dt. x ¢ (y)
= p()-X

Remember that at time « we know p and the payoff. Using the law of iterated expectations the
price of the security is

E [E [5 (T) - e~ Jo'r®at . X( qu — E[p(u) - X]

Key result: For any reinvested asset price process S the term

p(t)-S(t)

is a P-martingale and the term
e~ Jordu g (4)

is a Q-martingale.
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10 Ahn-Dittmar-Gallant (no default risk)

The fact that p (¢) - S (¢) is a P-martingale implies for all t < u

pt) = Elp(u)-S(u)|F

and so we get as pricing formula under P

S(t):E[%-S(u)

g

where the term % is known as the marginal rate of substituion. Under @) we can write the
pricing formula as

S (t) = EX [ef ' r(@yda | g (u)‘ ft}

Proof: To proof that p (¢) - S (¢) is a P-martingale we have to show that
Elp@)-S(t) 1a] =E[p(u)-S(u)-1a] VAEF

or equivalent

E [e— Jor@da ¢ (). 8 (1) ]A] - E [6— Iy r@da ¢ (). 8 (u) - ]A}

Q {e_ Jor(@)da ¢ (T)- S (t)- [A] — EQ [e_ Jor@da e (7). 8 (u) - IA}(lo.l)
where formulal0.1 follows from

o~ Jo r(a)da S ()
being a @-martingale. Remember:
E[e=hr@®. 5 ) 1s-E[¢ (D) 7

The price at time ¢ of a u-maturity discount bond is
P(t,u) =E {—p(“) : 1‘ ]—}}

which follows from

Now we look at the Y -factors

dY = k- (0= Y)dt + SdW
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10 Ahn-Dittmar-Gallant (no default risk)

where k, 6 and X are constant and T is a INV-vector of independent Brownian motions. The
factors are called gaussian factors because they are no square-root processes. Further

dp N
— = —rdt+ ~; - Y;dW;
under P (not Q! and so

T’(t) :(So—i-Y/-A-Y

where A is constant and positive semidefinite and d is positive. So positive short rates are
guaranted, while we still have a quite flexible correlation structure.
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11 Portfolio consumption choice In
complete markets

We need to maximize

E[/OTu@t)dt]

subject to
E [/OTp(t) -c(t)dt] = wyp

where wq denotes the initial wealth. Lagranian give us

E[/OTu(ct)dt—)\[/OTp(t)c(t)dt—wo”

So the first order condition is

w ()= X-p(t) = 0 Vit
pls) _ e
p(t) u' (i)
p(t) = e Jor@ie ¢
o _ <
- (t)dt +

where £ is a P-martingale. So we have

d ,
Fp = —r (t) dt 4 stochastic part
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11 Portfolio consumption choice in complete markets

and we know that the bond prices are determined by the model of r (¢) and the stochastic part of
%. Further we calculate (using Ito)

s
—~
~
~—

»
—~
~
~—
I

P — martingale

d(p-S) _ dp  dS dp ds
s I\ S

= —rdt + stochastic part + s + dp\ (43
S P S

s = rdt — <@> . (%) — stochastic part
P

5] - ()9

where we call the term (@) - (42) the risk premium,
p

Example
Maximize the portfolio choice

max E [/OT e u(cr) dt]

We start with

and use lto to get

Using Ito once again it follows
du' (c(t)) = u" (c(t)) de(t) + % " (e (t)) (de)?

so the stochastic part of dp jg equal to stochastic part of Z’,/((CC((;)))) multiplied by the stochastic
part of dc. As final result for the risk premium we get

-(0)(5)- S (9 ()

-~

coefficient of rel. risk aversion

so the risk premium is equal to the coefficient of relative risk aversion mulitplied by the
covariance with 4.
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